Post-Hearing Submission (ISH2: Ecology and Biodiversity): Dr Edmund Fordham

Dated: 16th December 2022

Annexes EF36 and EF37 uploaded separately

THE PLANNING INSPECTORATE

EN010106 – Sunnica Energy Farm

APPLICATION BY SUNNICA Ltd for an Order Granting Development Consent for the Sunnica Energy Farm Project pursuant to The Planning Act 2008

To the Examining Authority (ExA)

POST-HEARING SUBMISSION: ISH2: Ecology and Biodiversity

Eurlng Dr Edmund John Fordham MA PhD CPhys CEng FinstP Interested Party – Unique Reference: 20030698

Please note:

1. These comments are being submitted as required by Deadline 4 (16 December 2022). They are confined to questions of local micro-climate changes caused by the presence of large acreages of solar PV panels.

SUMMARY

A thorough evidence-based appraisal of changes in the local microclimate consequent on the very large acreages of solar PV arrays is critical to any complete appraisal of the effects of the scheme on local Ecology and Biodiversity.

No such Appraisal has been provided.

Comments at ISH2

1. My principal comment at ISH2 (Ecology and Biodiversity) was that no account has been taken of changes to the local microclimate caused directly by the presence of large acreages of solar PV arrays. It has been established in the technical literature since at least 2016 (from actual measurements) that such changes do occur, both in air temperatures, soil temperatures, and humidity measures, changes seen both in diurnal variations and in seasonal variations.

Annexed papers

2. Two scientific papers were cited at the ISH2 and are Annexed hereto by request of the ExA.

Reasons for changes in microclimate

3. There are obvious reasons why this might occur, requiring no more than the principle of Conservation of Energy to understand. Solar PV arrays are black (and not green) and dark colours are well-known to be good absorbers of visible and infrared radiation. It is inevitable that any efficient solar PV cell will be black in colour.

However, solar PV cells are not very efficient. Once again, the Applicant has failed to state any Efficiency figure, although a definite value must have been used, in conjunction with a solar model, to make the estimates for lifetime energy output claimed. One question the ExA could usefully ask is: what Efficiency for the solar PV cells has been assumed in the energy output estimates?

At the time of the famous book by the late Prof Sir David MacKay FRS¹, efficiencies for commercial cells were around 10%. Making the generous assumption that efficiencies of commercial solar PV cells are now around 20%, this means only 1/5 of the incident solar radiation is converted to useful electricity. Whilst some incident radiation may be reflected, the black colour means that the reflected fraction is likely to be small. Hence up to 80% of the incident solar radiation remains, and can only go into making the panels hot.

These are of course indicative values only, but one must accept that the solar energy going into heating the cells will be several times the useful electric energy output.

4. With huge acreages of solar cells, the claimed maximum output power of 500 MW on a bright summer's day could thus imply around 2000 MW (2 GW) of solar radiation converted to heat in the panels.

¹ Sustainable Energy: Without the Hot Air. D J C MacKay (2009) UIT Cambridge Ltd

5. This may be significantly larger than the heat generated by solar energy incident on the ground *before* the panels were installed, because of the dramatic change in colour. If the land was covered in green grass or crops before being panelled over, it will now be largely black. (It is ironic that a scheme claimed to be "green" in reality would convert land from actually green, to black).

In technical language, the surface albedo has been changed.

6. The "Urban Heat Island" (UHI) effect is a direct consequence of the above considerations. The UHI effect is now very well-established in micrometeorology with major cities (London being the classic example) having a microclimate typically several degrees warmer than surrounding countryside at the same latitude. There is no reason not to expect similar effects above, under, between, and for a significant distance outside, the solar PV arrays.

Effects on Ecology and Biodiversity

- 7. The annexed papers report highly significant changes in soil and air temperatures, and humidity measures, all dependent on locations above, under, or between the solar PV arrays.
- 8. It is inevitable that this will affect germination and plant growth, and may tend to favour an entirely different biome, certainly in respect of plant life, with knock-on consequences for insect and animal life dependent on the local flora.
- 9. A rational ecological evaluation is seriously incomplete unless the local microclimate changes are fully evaluated, together with an evaluation of the consequences for the local flora and fauna.
- 10. No such analysis has been provided by the Applicant. Any appraisal of effects on Ecology and Biodiversity is critically incomplete until such an analysis is done.
- 11. In particular, unless and until the lateral extent of microclimate shifts is established, no appraisal can be made of the effect of local microclimate shifts on the Ramsar-designated wetlands in close proximity to the solar PV areas.

These are highly sensitive areas and must be expected to suffer significant harm if the ecological balance of local flora and fauna is disturbed by shifts in the microclimate.

12. A thorough evidence-based appraisal of the likely changes in microclimate, and their spatial extent, consequent on the very large acreages of solar PV arrays, should therefore be provided.

(753 words)

EJF 16/12/22

Glossary, and updated list of Annexes referred to follows; Annexes uploaded separately

GLOSSARY

Abbreviations used in the interests of brevity.

Legislation and statutory permissions:

CLP – the Classification, Labelling and Packaging Regulation COMAH Regs 2015 – the Control of Major Accident Hazards Regulations 2015

CQ — Controlled Quantity (of a HS as defined in P(HS)Regs 2015)

DCO – Development Consent Order

dDCO – draft Development Consent Order

HS – Hazardous Substance (as defined in the Schedule to

P(HS)Regs 2015)

HSC – Hazardous Substances Consent

PA 2008 – The Planning Act 2008

P(HS)A 1990 – The Planning (Hazardous Substances) Act 1990

P(HS)Regs 2015 – The Planning (Hazardous Substances) Regulations 2015 QQ – Qualifying Quantity (of a "dangerous" substance) in the

COMAH Regs 2015; similar to CQ in the P(HS)Reg 2015

S or "S" — any "substance used in processes" which on its own or in

combination with others may generate HS defined in Parts 1

or 2 of the Schedule to the P(HS)Regs 2015

Seveso — the "Seveso III Directive" 2012/18/EU of 4 July 2012

UN MTC — United Nations Manual of Tests and Criteria

Direct quotations from legislation are shown in blue

Policy documents:

NPPF – National Planning Policy Framework

NPS – National Policy Statement

EN-1 — Overarching National Policy Statement for Energy (EN-1)

Direct quotations from policy documents are shown in magenta

Competent authorities:

CA – COMAH Competent Authority

DHCLG – Department for Housing Communities and Local Government

EA – Environment Agency

ECDC – East Cambridgeshire District Council (LPA)

ExA — Examining Authority

FRS – Fire and Rescue Service

HSA – Hazardous Substances AuthorityHSE – Health and Safety Executive

HSE(NI) – Health and Safety Executive for Northern Ireland

LPA – Local Planning Authority

SoS – Secretary of State

WSC – West Suffolk Council (LPA)

GLOSSARY (cont.)

Parties:

Sunnica — the Applicant, or the proposal under Examination

SNTSAG – Say No To Sunnica Action Group Ltd (continued)

Documents

OBFSMP – Outline Battery Fire Safety Management Plan

BFSMP – Battery Fire Safety Management Plan

LIR – Local Impact Report

Technical:

BESS – Battery Energy Storage System(s)

Li-ion – Lithium-ion

M-factor – Multiplying Factor used for certain substances Toxic to the Aquatic

Environment in eco-toxicity classifications

SoC – State Of Charge of cells, usually given as percentage, between fully

charged (100%) and completely discharged (0%)

STEL – Short Term Exposure Limit, i.e. limiting allowed concentration

for short-term exposures (typically 15 minutes)

VCE – Vapour Cloud Explosion

IUPAC – International Union of Pure and Applied Chemistry

GCMS – Gas Chromatography Mass Spectrometry

CAS – Chemical Abstracts Service, maintains a catalogue of unique

chemical substances with reference numbers

IDLH – Imminent Danger to Life and Health

AEGL-3 – Acute Exposure Guideline Levels

SLOT – Specified Level of Toxicity

SLOD – Significant Likelihood of Death

UHI – Urban Heat Island

Chemical substances:

 CH_4 — Methane C_2H_4 — Ethylene C_2H_6 — Ethane

CO – Carbon Monoxide CO₂ – Carbon Dioxide

Co – Cobalt (as metal) (not to be confused with CO)

CoO – Cobalt (II) Oxide
Cu – Copper (as metal)

CuO – Cupric (or Copper (II)) Oxide

Cu₂O – Cuprous (or Copper (I)) Oxide

H₂ – Hydrogen

HCN - Hydrogen Cyanide
HF - Hydrogen Fluoride
Mn - Manganese (as metal)
MnO - Manganese (II) Oxide

Ni - Nickel (as metal)
NiO - Nickel Monoxide
ONiO - Nickel Dioxide
Ni₂O₃ - diNickel triOxide
POF₃ - Phosphoryl Fluoride

Li-ion cell types:

NMC – Nickel – Manganese – Cobalt; a popular Li-ion cell type, with

cathodes based on complex oxides of those elements

LFP – Lithium – Iron [chemical symbol Fe, hence "F"] – Phosphate;

another type of Li-ion cathode chemistry

LCO, NCA, LATP – other cell cathode chemistries mentioned in text

LMO – Lithium Manganese Oxide

LNO – Lithium Nickel Oxide

Measurement units:

GW – gigawatt, or one billion watts, or one thousand megawatts

MW – megawatt, or one million watts, a unit of *power*, i.e. *rate* of transfer of

energy

MWh – megawatt-hour, or one million watt-hours, a unit of energy e.g. the

energy transferred by a power of 1 MW acting for 1 hour

m² – square metre (area)

ha $- 1 \text{ hectare} = 10,000 \text{ m}^2$

MWh ha⁻¹ – energy storage density (on the land) in the BESS compounds, as

MWh energy storage capacity, per hectare of land allocated

MWh / tonne or MWh tonne⁻¹ – energy density of the BESS cells themselves,

as MWh energy storage capacity, per tonne of cells

Wh / kg or Wh kg⁻¹ – energy density of the BESS cells themselves,

as Wh energy storage capacity, per kg of cells

1 MWh / tonne = 1000 Wh / kg

mg / Wh or mg (Wh)⁻¹ – gas generation from cells in failure, in milligrams

gas per watt-hours of energy storage capacity

tonne – 1 metric tonne or 1000 kg or 1 Mg

μg m⁻³ – trace concentrations of highly toxic gases, in micrograms of toxic

contaminant per cubic metre of air

Post-Hearing submission: ISH2 of Dr Edmund Fordham (dated 16th December 2022)

- EF1 Personal details
- EF2 "Safety of Grid Scale Lithium-ion Battery Energy Storage Systems" by E J Fordham (Interested Party), with Professor Wade Allison DPhil and Professor Sir David Melville CBE CPhys FInstP
- EF3 "Hazardous substances (Planning) Common Framework"

 CP 508 Presented to Parliament by the SoS for DHCLG August 2021
- EF4 Directive 2012/18/EU of the European Parliament and of the Council on the Control of Major-Accident Hazards involving dangerous substances commonly known as the "Seveso III Directive"
- EF5 The Planning (Hazardous Substances) Regulations 2015
- EF6 Explanatory Memorandum to the P(HS)Regs 2015
- EF7 The Planning (Hazardous Substances) Act 1990
- EF8 Overarching National Policy Statement for Energy (NPS EN-1)
- EF9 Speech of Dame Maria Miller MP, House of Commons, 7 September 2022 Hansard, (House of Commons) Volume 719, Columns 275-277
- EF10 Battery Storage Guidance Note 1: Battery Storage Planning. Energy Institute, August 2019, ISBN 978 1 78725 122 9
- EF11 D. Hill (2020).

"McMicken BESS event: Technical Analysis and Recommendations" Technical support for APS related to McMicken thermal runaway and explosion.

Arizona Public Service. Document 10209302-HOU-R-01 Report by DNV-GL to Arizona Public Service, 18 July 2020.

- EF12 Underwriters Laboratories incident report into McMicken explosion
- EF13 (5 items) News items and English translation from Chinese of official accident investigation into April 2021 BESS fire and explosion in Beijing
- EF14 (3 items) Reports from Merseyside Fire and Rescue Service into September 2020 BESS fire and explosion in urban Liverpool
- EF15 Larsson *et al.* (2017), *Scientific Reports*, **7**, 10018, DOI 10.1038/s41598-017-09784-z

- EF16 Paper with Professor Sir David Melville CBE: "Hazardous Substances potentially generated in "loss of control" accidents in Li-ion Battery Energy Storage systems (BESS): storage capacities implying Hazardous Substances Consent obligations.
 - In public domain on *Research Gate* preprint server DOI 10.13140/RG.2.2.35893.76005
- EF17 Golubkov et al (2014) RSC Advances DOI 10.1039/c3ra4578f
- EF18 Research Technical Report by *FM Global:* Flammability characterization of Li-ion batteries in bulk storage"
- EF19 Bergström *et al* (2015) Vented Gases and Aerosol of Automotive Li-ion LFP and NMC Batteries in Humidified Nitrogen under Thermal Load
- EF20 (2 items) Victorian Big Battery Fire, July 2021. Report of technical findings. Also compendium of news items with aerial photography.
- EF21 (2 items) Letter from Commissioner Sandra D. Kennedy, Arizona Public Service Company, August 2019, regarding McMicken explosion.
 Also letter with Fire Department report into earlier 2012 BESS fire with eyewitness reports on flame length.
- EF22 Technical Memorandum from Golder Associates re composition of BESS at Kells, Northern Ireland
- EF23 Ouyang et al. (2018), *J. Thermal Analysis and Calorimetry*, DOI: 10.1007/s10973-018-7891-6
- EF24 Essl et al. (2020), Batteries, **6**, 30 DOI: 10.3390/batteries6020030
- EF25 Chen *et al.* (2020), *J. Hazardous Materials*, **400**, 123169

 DOI: 10.1016/j.jhazmat.2020.123169 (Citation only: article copyright)
- EF26 Held *et al.* (2022) *Renewable and Sustainable Energy Reviews*, **165**, 112474 DOI: 10.1016/j.rser.2022.112474
- EF27 Wang *et al.* (2019) *Energy Science and Engineering*, **7**, 411-419 DOI: 10.1002/ese3.283
- EF28 Hazard Assessment of BESS, Technical Report by Atkins (Consulting Engineers) for Health and Safety Executive for Northern Ireland HSE(NI)
- EF29 Letter 13/05/2022 from HSE(NI) to Ards and North Down Borough Council
- EF30 Letter 22/09/2022 from HSE(NI) to Derry City and Strabane District Council
- EF31 Letter 10/09/2021 from HSE(NI) to Armagh City, Banbridge & Craigavon Local Planning Office
- EF32 Letter 18/07/2022 from HSE(NI) to Derry City and Strabane District Council
- EF33 Letter 20/05/2021 from HSE(NI) to to Armagh City, Banbridge & Craigavon Local Planning Office

EF34 – Research Technical Report by *FM Global*: "Development of sprinkler protection guidance for Lithium-ion based energy storage systems"

EF35 – P. Andersson *et alia*, "Investigation of fire emissions from Li-ion batteries", SP Technical Research Institute of Sweden, 2013.

New Annexes added this submission (16 December 2022)

EF36 – Barron-Gafford *et al.* (2016). The photovoltaic heat island effect: Larger solar power plants increase local temperatures. *Scientific Reports* **6**, 35070, DOI: 10.1038/srep35070

EF37 – Armstrong *et al.* (2016). Solar park microclimate and vegetation management effects on grassland carbon cycling. *Environmental Research Letters* **11**(7) 074016 DOI: 10.1088/1748-9326/11/7/074016